
Department of Electrical Engineering and Computer Science

Next Generation I/O Panel
(Are we Addressing the Right

Problem? Think Purpose!)

Alok Choudhary

HEC	
 FSIO	
 2011	

Department of Electrical Engineering and Computer Science

LET’S LOOK AT THE USERS-
WHAT DOES A USER WANT/
NEED?

Department of Electrical Engineering and Computer Science

@ANC

How Do I Represent and Manage My Data?
Not How File System Works and How do I

manage millions of files

Department of Electrical Engineering and Computer Science

@ANC

How Do I discover Knowledge from Complex Data
Sets? Not How do I Optimize Reading Millions of

Files and from millions of processors?

(a) Mesh Refinement

(c) Combined Mesh

Level 2

Level 1

Level 0

(b) Grid Hierarchy

(a) Mesh Refinement

(c) Combined Mesh

Level 2

Level 1

Level 0

(b) Grid Hierarchy

Department of Electrical Engineering and Computer Science

5

How Do I perform queries in a manner
which relates to my application?

Time!

Variables!

Department of Electrical Engineering and Computer Science

@ANC

User specifies how

streaming/

Small/large

configuration

s/w layer

Regular/irregular

Local/remote

What Does a User Get?

Main
Memory

Low Power DRAM

SSD

Massive Disks

Tape Silos

Department of Electrical Engineering and Computer Science

@ANC

Complexity

Data Access
Patterns

U
sa

ge
 M

od
el

(I
m

m
ed

ia
te

/A
rc

hi
va

l)

Access Type
(Overwrite/Streaming)

C
on

cu
rr

en
cy

/P
ar

al
le

lis
m

(S
m

al
l/L

ar
ge

)

Storage Systems
(Active/Passive)

Software Layers
(High-Level/MPI/Filesystem)

Data Access
Patterns

U
sa

ge
 M

od
el

(I
m

m
ed

ia
te

/A
rc

hi
va

l)

Access Type
(Overwrite/Streaming)

C
on

cu
rr

en
cy

/P
ar

al
le

lis
m

(S
m

al
l/L

ar
ge

)

Storage Systems
(Active/Passive)

Software Layers
(High-Level/MPI/Filesystem)

Fault-tolerance

Department of Electrical Engineering and Computer Science

@ANC

FS DM Datasets HSS

Goal
Decouple “What” from “How”

caching
collective
reorganize

loadbalance
Fault-tolerance

Understand

A
pp

1

A
pp

2

A
pp

3

A
pp

4

I/O
 S

W
 O

PT

streaming/

Small/large

configuration

s/w layer

Regular/irregular

Local/remote

Current

•  Is there a way to specify high-level
information?

•  Proactive
•  Performance
•  Portability

Department of Electrical Engineering and Computer Science

I/O Software Stack for
Scientific Computing

High	
 Level	
 I/O	
 Library	

Parallel	
 Filesystem	

Application	

I/O	
 Middleware	

I/O	
 Hardware	

PnetCDF	
 HDF5	

MPI-­‐IO	

Lustre	
 GPFS	
 PanFS	
 PVFS2	

Department of Electrical Engineering and Computer Science

•  Storage data models developed in the 1990s;
Network Common Data Format (netCDF) and
Hierarchical Data Format (HDF)

•  Multidimensional array based data models
•  A portable, self-describing on-disk file format
•  HDF5

•  Supports regular grid based data models

High Level I/O Library

Department of Electrical Engineering and Computer Science

Parallel netCDF
•  A parallel I/O library based on original netCDF
•  Data Model:

•  Collection of variables in single file
•  Typed, multidimensional array variables
•  Attributes on file and variables

•  Features:
•  Portable data format
•  Noncontiguous I/O in memory using MPI datatypes
•  Noncontiguous I/O in file using sub-arrays
•  Collective I/O

Department of Electrical Engineering and Computer Science

Example: Lower Triangular
Matrix Damsel: A Data Model Storage Library for Exascale Science

Figure 2: Traditional I/O software stack.
Proposed work has impact on high-level
I/O libraries and I/O middleware.

Figure 3: One way in which storage models do not match perfectly
with application abstractions. Layout for a simple lower triangular ma-
trix results in wasted space and possibly lower performance (either
more seeks or larger I/O requests) when reading.

2.1 Today’s I/O Software Stack

I/O systems on modern HPC hardware is actually a stack of components, consisting of disk and network
hardware, high-level I/O libraries, and I/O middleware that link the two. A depiction of this I/O stack is
shown in Figure 2. At the bottom of this stack is the storage layer, appearing as a parallel file system
connected to disk and network hardware. I/O middleware, such as an MPI-IO implementation [17], sits on
top of the parallel file system and handles communication between parallel compute nodes and I/O nodes,
including management of both concurrency and locality of accessing data.

I/O middleware and lower layers are designed to maximize I/O throughput, primarily as a linear stream of
bytes. Computational science codes, in contrast, understand the semantics of those bytes, as grids, fields
on the grids, and metadata annotations to both. High level I/O libraries are designed to translate between
the semantic and storage representations. HDF5 and PnetCDF are the two most popular options in HPC,
supporting the management and organization of semantic information, as well as the mechanics of I/O
storage operations. Currently, these high-level I/O libraries present a data model based on multi-dimensional
arrays of typed elements, with annotations for timestamps, runtime parameters, or other provenance. In
addition to multi-dimensional arrays and attributes, the libraries also define a portable, self-describing on-
disk file format, making it easier to exchange data with colleagues.

However, even a fairly simple example of solution data on a structured grid can map to I/O libraries in
less than ideal ways. Figure 3 illustrates the mapping from a conceptually straightforward lower triangular
matrix to several storage layouts. The netCDF layout, based on fixed-dimensional arrays, results in an array
that wastes just under half its allocated space. HDF5 supports multi-dimensional arrays and chunk-based
allocators, which alleviate this problem somewhat. However, the application must specify the chunk size,
and coordinate matching the matrix structures to those chunks. This can add development complexity, and is
even more difficult for unstructured data types. A better approach would take advantage of the data model’s
semantic information and avoid allocating space that will not be used.

2.2 Data Models and Layouts

A data model describes how simulation data is represented and accessed. For discretization-based solutions
of PDEs, the data model includes a description of the discretized domain (space and time, and sometimes
other dimensions like energy), and field data computed by the simulation over those discretizations. The
data model is a key part of HPC codes and strongly influences the efficiency of both computation and
communication. At their core, scientific codes usually store the model as multi-dimensional arrays, since

5

Department of Electrical Engineering and Computer Science

Some Observations

•  I/O library interfaces still based on low-level
vectors of variables

•  Lack of support for sophisticated data
models, e.g. AMR, unstructured Grids,
Geodesic grid, etc

•  Gap between application data model and I/O
library data model

•  Require too much work at application level to
achieve close to peak I/O performance

Department of Electrical Engineering and Computer Science

DAMSEL Goals
•  Provide higher-level data model API to

describe more sophisticated data models
•  Enable exascale computational science

applications to interact conveniently and
efficiently with storage through the data
model API

•  Develop a data model storage library to
support these data models, provide efficient
storage data layouts

Department of Electrical Engineering and Computer Science

DAMSEL – A Data Model Storage Library
•  A set of data models I/O APIs relevant to computational science

applications
•  A data layout component that maps these data models onto storage

efficiently
•  A rich metadata representation and management layer to handle both

internal metadata and that generated by users and external tools
•  I/O optimizations: adaptive collective I/O, request aggregation, and

virtual filing

Data	
 Model	
 I/O	
 API	

Aggregation	
 Optimization	

Data	
 Layout	
 and	
 	

Metadata	
 Management	

Storage	
 Access	

High	
 Level	
 I/O	
 Library	

Parallel	
 Filesystem	

Application	

I/O	
 Middleware	

I/O	
 Hardware	

Department of Electrical Engineering and Computer Science

DAMSEL for FLASH
•  Goal: to describe hierarchical/structural and

solution information through API
•  Entity

•  FLASH cell as rectangle entity in DAMSEL
•  FLASH Block as Cartesian Mesh entity in DAMSEL

•  Entity Sets
•  FLASH blocks assigned to entity sets to define hierarchical/

structural information

•  Tags
•  Only for solution data

7	
 6	
 5	
 4	

1	

2	
 13	
 12	
 11	

14	
 17	
 16	
 15	
 3	
 10	
 9	
 8	

1	

2	

3	

4	
 5	

6	
 7	

8	

9	
 10	

11	

12	
 13	

14	
 15	

16	
 17	

Morton order

•  FLASH	
 cells	
 as	
 rectangle	

en4ty	
 in	
 DAMSEL	

•  FLASH	
 blocks	
 as	

cartesian	
 mesh	
 en4ty	

in	
 DAMSEL	

•  Each	
 cartesian	
 mesh	
 enCty	

is	
 assigned	
 to	
 an	
 en4ty	
 set	

to	
 define	
 parent/child	

relaConship	
 in	
 DAMSEL	

SoluCon	
 data	
 on	
 cells	
 as	
 tags	

in	
 DAMSEL	
 	

Department of Electrical Engineering and Computer Science

1) High-Level User
Centric View, Purpose
Driven

2) Online/In-situ
Transformations,
analytics

3) Active Storage,
Analytics,
Reorganization

Next Generation I/O - Three Ideas:

Accelerate Knowledge
Discovery

Department of Electrical Engineering and Computer Science

Summary
•  Think Processor Evolution when thinking I/O

•  Desktop, laptop, Mainframe, embedded, mobile, graphics,
games, etc etc… Designed to solve a problem

•  Think application and user model and needs
and not how to make things work with file
system

•  Working in user’s language will accelerate
knowledge discovery – and they will come

•  Ultimately, the purpose of I/O should drive
architecture at all levels

